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BEFORE GETTING INTO ANY DETAILS, STATISTICS, or formulas, it is worthwhile to
consider both the scope of the text and some introductory concepts. This gen-
eral overview introduces common questions and procedures in statistics and
presents the sequence of topics in the text.

Statistics have options. First, there are different kinds of data or infor-
mation with which we work, and they call for different statistical procedures.
Data* consist of the measurements and numbers we summarize and analyze,
but how do we decide which statistical methods are best? Which statistical
procedures are appropriate and which are not? An important consideration in
answering these questions is the level or scale of measurement. This refers
to whether we have actual numbers or merely categories as data. Numbers
naturally refer to actual quantities as data: the number of miles you drive per
year, your age, how much money you earned last year, your exam scores, and
so on. If you work for an immigration lawyer who wishes to know the typi-
cal length of time clients have spent in the United States before applying for

1

CHAPTER 1

Beginning Concepts

*Terms presented in bold face in the text appear in the glossary, which begins on page 315.

In this chapter, you will learn how to:

• Recognize nominal, ordinal, and interval-ratio levels of
measurement

• Explain why the difference between levels of measurement 
is important in statistics

• Read frequency distributions
• Distinguish between descriptive and inferential statistical

analyses
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citizenship, you would have measurements or data points that consist of the
numbers of months clients had been in the United States before submitting
citizenship applications. Based on those numbers, you could calculate a typical
or average time to applying for citizenship, and that would not be a complicated
procedure. Sometimes, however, your data or measurements will not consist
of numbers.

At a different level or scale of measurement, your information may con-
sist simply of designations or categorizations people have made. Examples
include checked boxes to indicate sex or gender, academic major, religious
preference, and so on. These measurements are clearly not numerical. They
are merely descriptive categories: female or male? Major in social science,
chemistry, business, Spanish, etc.? Catholic, Buddhist, Protestant, Muslim,
Jewish, and so on? These sorts of measurements or data would require differ-
ent statistical treatments than would numerical information. Therefore,
whether we have numerical or categorical data influences any decision as to
what statistical procedures are acceptable. Simply put, the typical statistical
procedures we use with a set of ages, for instance, do not work if we are asked
to analyze data involving sex or religion, and vice versa. A further considera-
tion is whether our purpose is descriptive or inferential statistical analysis.

Briefly, the distinction between descriptive and inferential statistical
analyses refers to how broadly we wish to generalize our statistical results
and the subsequent conclusions. If 200 people leaving the voting booth tell us
their selections, is this a valid indicator of how the overall election may go?
Well, maybe and maybe not. We may do statistical analyses on any set of data
and simply describe that sample of cases. Summarizing how our 200 people
voted would be easy enough. However, may we legitimately infer something
about a whole population of voters from this 200? Are they representative of
all voters in that precinct? If we wish to make inferences about larger popu-
lations, we must be especially careful to analyze truly representative and ran-
domly selected samples from those populations. This is crucial; therefore,
probability statements always accompany our inferences. What is the proba-
bility our inferences are correct? Incorrect? That makes inferential analyses
different from a mere description. We will consider such issues in more depth
later. For now, we turn to a text overview.

A Preview: Text Overview

As the text progresses, we will build upon more elementary concepts. We start
with material that is no doubt familiar. Chapter 2 starts with statistics that tell
us the central tendency in a set of data. These statistics give us a sense of the
typical cases or central themes in sets of numbers. Measures of variation fol-
low; they tell us how much numbers in a set tend to vary from each other. Are

2 Learning to Live with Statistics
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they spread over a wide range or, conversely, do they tend to cluster near the
average? As used in Chapter 2, measures of central tendency and of variation
are descriptive statistics. They simply summarize sets of available data.

The next topic, covered in Chapter 3, is probability. Probability forms a
bridge between descriptive statistics and inferential statistics. All statistical
inferences include information as to the probability they are correct. Proba-
bility, however, is a varied topic in itself. Chapter 3 provides an overview of
the field and looks at two types of measurement commonly used in statistics,
continuous and discrete binomial variables. Continuous variables may be
measured in fractions (i.e., in less than just whole units). For example, time
or distance may be measured down to thousandths of a minute or a mile if we
wish. In contrast, discrete measurements exist only in whole numbers. How
many courses are you taking? How many TV sets in your home? These meas-
urements, of necessity, are made in whole units or numbers. Moreover, as the
prefix bi suggests, binomial events are those in which only two things or
outcomes are possible. Whether a newborn is a girl or boy and whether a coin
flip comes up heads or tails are examples of binomial situations, and we have
unique procedures for determining such probabilities. Examples include the
probability of a woman having two girls and then a boy or the probability of
7 heads in 10 flips of a coin. Whether our variables are continuous or discrete
and binomial, however, we may take advantage of probability distributions
to help us determine, for any data set, what numbers are the most or least
likely to occur. One of these distributions is especially useful: the normal dis-
tribution, or bell-shaped curve. It is a prominent part of Chapter 3.

Following probability, Chapter 4 turns to inferential statistics. It intro-
duces sampling distributions, which are special cases of normal distribu-
tions that form the theoretical foundation for making inferences. We use sam-
pling distributions for estimation, that is, estimating unknown averages or
proportions (percentages) for large populations based upon samples. For in-
stance, how much does the average student spend on campus per week? What
proportion, or percentage, of students favor an ethnic studies course being re-
quired for graduation?

Chapters 5 and 6 also use sampling distributions for hypothesis testing.
Hypotheses are simply statements of what we expect to be true or what we ex-
pect our statistical results to show. Chapter 5 examines whether a single sam-
ple average or percentage differs from a corresponding population figure. We
might test the hypothesis that the average time to graduation in a sample of
college athletes does not differ significantly from the campus-wide or popu-
lation average. Alternatively, we might test whether the percentage of people
owning pets is significantly greater among people over age 65 than among
adults in general. Chapter 6 looks at two-sample situations. Instead of com-
paring a sample to a population, we compare one sample to another and ask

Beginning Concepts 3
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whether they differ significantly. At graduation, do the grade point averages
in samples of transfer and nontransfer students differ? Among drivers under
age 18, does a random sample of females receive significantly fewer tickets
than a similar sample of males?

Next, while still dealing with hypothesis testing, Chapter 7 shifts gears
somewhat. Chapter 7 differs from preceding topics in two respects. First, it
compares sample data not to population data but rather to other criteria. How
does our sample compare to what is expected by random chance or expected
according to some other stated criterion? We now test hypotheses that our
sample statistics do not differ significantly from random chance or from other
presumed values. For example, if a campus bookstore sells sweatshirts in
three school colors, is there a statistically significant preference for one color
over the other two? Random chance says all three colors should be selected
equally and that buyers pick their colors at random. But do actual sales vary
significantly from what random chance suggests they should be?

Second, Chapter 7 also introduces hypothesis tests for ranked and for
categorical data. Here, we use data that must first be ranked or are already
broken into categories. We may compare ranked scores (e.g., from essay tests
or opinion scales) in two samples. Categorized measurements may be related
to gender (female/male), religious denomination (Catholic/Protestant/Jewish/
Muslim/Buddhist), or type of vehicle driven (car/truck/van/motorcycle). In
these situations, we look at data in categories and consider the number of
cases expected to fall into each category by random chance versus the num-
ber of actual cases in that grouping. For vehicles driven, for instance, how
many people would be expected to list “car” according to random chance ver-
sus how many people actually did list “car?” Are drivers in our sample more
(or less) likely to use cars than random chance would suggest?

Chapter 7 also uses categorical data to establish correlations or associations
between characteristics. Whereas a hypothesis test may tell us whether an asso-
ciation between two characteristics differs from random chance, other statistics
allow us to calculate the approximate strength of that association. Various meas-
ures of association tell us how closely two characteristics are correlated.

Chapter 8 rounds out hypothesis testing by introducing situations involv-
ing three or more samples. For example, suppose we wish to compare the
average weight losses for people on four different diet plans. Do the average
losses differ significantly? Chapters 5, 6, and 7 deal with one- and two-sample
cases. Somewhat different methods are needed when we have more than two
samples, however, and these make up Chapter 8.

Finally, in Chapter 9, we return to correlations between sets of numbers.
Do the numbers of hours studied per week correlate with grade point aver-
ages? Do more years of education translate into (correlate with) higher incomes?
Besides such correlations, we will also consider how statistical predictions can

4 Learning to Live with Statistics
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be made. Suppose we knew that scores on a first statistics test correlated
strongly with scores on the second test. We may then predict scores on that
second test based upon students’ scores on the first test and also get an idea
of how accurate those predictions might be. This is known as correlation
and regression.

Each chapter concludes with a set of practice exercises. Some are essay
questions, but most call for you to diagnose the situations described, pick out
the relevant bits of information, and solve the exercise by using that chapter’s
procedures. The exercises are based on real-world situations, and you are
asked to translate those word problems into workable and complete solutions.
The task is to identify the nature of a problem and to then use the correct sta-
tistical procedures in your analyses—without being told specifically which
formulas to use. That is part of the learning process: diagnose a typical situa-
tion, consider what you are asked to do, and decide upon the appropriate sta-
tistical solution. Your instructor may assign selected questions as homework or
as classroom exercises. You are strongly encouraged to try as many of these
exercises as your time allows, even if they aren’t assigned. There is no one
single strategy more conducive to learning statistics than practice, practice,
practice. The end-of-chapter problems are designed to cover all the procedures
and possible alternatives introduced. If you can do the exercises, you have
mastered the chapter.

With this general plan of the text in mind, the remainder of this chapter
turns to two issues important in any statistical analysis. First, with which kind
or level of data are we working? Second, is our analysis descriptive or infer-
ential in nature?

The Level of Measurement: Using the Right Tools

In the research process, measurement is the first step, preceding any statisti-
cal analyses. Measurement is simply a matter of being able to reliably and
validly assess and record the status or quantity of some characteristic. For stu-
dents’ academic levels, for instance, we simply record their statuses as fresh-
men, sophomores, juniors, seniors, or graduates. We often refer to the things
we measure as variables, that is, characteristics we expect to vary from one
person or element to the next. Conversely, if something is true of every per-
son or element, it is a constant. For example, grade point averages (or GPAs)
among history majors would certainly vary, but the designation “history
major” would be a constant. Constants become parts of our definition for the
population we are studying, such as all upper-division history majors or all
commuting students, and we often do not measure them directly. We assume
everyone measures the same on those characteristics. Our measurements of
variables, however, require statistical analyses.

Beginning Concepts 5
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We use the upper-case letter X to denote any single score. For instance, if
we are measuring TV viewing, and if respondent number 17 watches 25 hours
of TV per week, then X17 = 25. We need this way of referring to individual
measurements. We must have a way to write formulas and express how we are
going to treat the individual scores or observations. If we wish to square each
measurement, we write “X2.” If we wish to multiply each X score by its com-
panion Y score, it is “XY,” and so on. “X” will appear in many formulas
throughout the text, and we will have numerous occasions to refer to the “X
variable.”

One other feature of variables should be briefly noted here. To statisti-
cians, the variables they analyze are obviously measurable and recordable.
They have their measurements or data with which to work. Sometimes, how-
ever, a researcher assumes the variables reflect more broad or abstract con-
cepts and characteristics. Research often includes more general and theoreti-
cal factors that do not lend themselves easily to direct measurement, such as
personality, socioeconomic status (someone’s location in a prestige or lifestyle
hierarchy), employee morale, marital happiness, and so on. In these cases, the
actual measurable variables or data become empirical indicators for the
abstract concepts. For instance, answers to items on personality inventories
(e.g., “Would you rather go to a movie with friends or stay home and read a
bestselling book?”) serve as indicators for broader and more theoretical dimen-
sions of personality makeup. People may be asked about their incomes, educa-
tional histories, or occupations rather than directly asking their socioeconomic
class levels. Measuring morale or marital happiness may mean asking about rec-
ommending one’s job to a friend or about whether one has thought about divorce
or would remarry the same person. Variables, then, and the resulting measure-
ments will sometimes be obvious and concrete (sex, age), whereas at other times
they may be indicators or reflections of more abstract concepts (sociability, men-
tal health). In either case, the statistical analyses measurements used on these
variables are of different kinds or levels.

The level of measurement involves the quantitative precision of our vari-
ables. Some variables naturally lend themselves to precise numerical meas-
urements (e.g., age and income), whereas others do not (e.g., gender, aca-
demic major, and political party preference). Still other variables fall between
these two extremes. Often, variables have been somewhat subjectively or
arbitrarily quantified (e.g., test scores or attitudinal/opinion scores). Gener-
ally speaking, the higher or more quantitatively precise the level of measure-
ment, the more we can do with the data statistically. The most precise levels
are the interval and the ratio. Interval or ratio level data consist of legitimate
and precise numerical measurements. This allows us to choose from a very
wide range of statistical tools or operations. Nominal or categorical data, at

6 Learning to Live with Statistics
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the other end of the continuum, are sometimes described as nonquantitative.
We are simply labeling or categorizing things (e.g., Democrat versus Repub-
lican) and are not measuring quantities. We may still summarize our data or
test for multivariate correlations and so on, but our statistical choices are
more limited. The basic point is that, with the higher levels of measurement,
the more statistical options or possibilities we have. As we proceed through
the following chapters, one consideration will be the kinds of statistical treat-
ments appropriate when we have certain levels of data. Or, to think of this the
other way around: If we wish to use a certain statistical procedure, what sort
of data must we have?

Creating Categories
The nonquantitative level of measurement is called the nominal level. This
is the most simple and elementary level or scale of measurement. A nominal
variable’s categories or measurements are qualitatively different from each
other. The categories—say, female and male—cannot be ranked or put in any
natural order or sequence. Designating females as category 1 and males as
category 2 would be no more legitimate or correct than making males 1 and
females 2. Besides gender, other examples are racial or ethnic background,
marital status, academic major, or religious denomination. Considering the
latter, we might establish the following categories: Protestant, Catholic, Jew-
ish, Buddhist, Muslim, Other. We would have six major categories, but that is
all. We could not go an additional step and rank the categories from highest
to lowest. That would be nonsensical; the categories of measurement have no
natural or logical sequence to them. They make just a much sense in any order:
Muslim, Jewish, Catholic, Buddhist, Protestant, Other. Or, alphabetically, we
would have Buddhist, Catholic, Jewish, Muslim, Protestant, and finally Other.
The same is true if we list major racial/ethnic categories. We could list them
alphabetically as African American, Asian American, Caucasian, Latino,
Other, but it would be just as valid to list them in a different sequence: Asian
American, Latino, African American, Caucasian, Other. Our measurements or
categories do not fall into any one order or sequence. The measurements dif-
fer qualitatively from each other, not quantitatively. We often refer to these
measurements as qualitative or categorical variables. We are measuring dif-
ferences of type, not differences of amount. For instance, a researcher might
ask your racial or ethnic extraction; the researcher would not ask how much
race or ethnicity you have. Race, ethnicity, and the other examples are simply
nominal and not quantitative variables.

Statistical operations with nominal data use the category counts or tal-
lies, also called category frequencies. For example, with a sample of 100
people (n = 100) that includes 53 females and 47 males, we use the 53 and

Beginning Concepts 7
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the 47 in any statistical operations. Saying a variable is nonquantitative does
not mean we cannot do any statistics with the data. It just means we may only
use the frequencies, tallies, or counts when we do so. The categories of mea-
surement themselves are nonnumerical, e.g., Latino or Asian American, or
drivers of cars versus trucks. Even so, we may at least count how many peo-
ple fall into the respective categories, and it is these latter numbers that we
use in our statistical analyses. We will work with frequencies and nominal
data when we look at cross-tabulations and measures of association.

Frequency distributions illustrate the different levels of measurement.
Frequency distributions show all the measurements recorded for a particu-
lar sample or population. The figures typically include the actual numbers
and percentages falling into each measurement category. Researchers typi-
cally look at such frequency distributions before doing anything else. The fre-
quencies (or tallies or counts or percentages) represent the most elementary
level of analysis and are purely descriptive.

We look first here at frequency distributions in the form of tables. Although
not shown, pie charts, line graphs, or bar graphs may be used as well. Each
chart or table shows the responses for a single variable, starting with nominal
variables. Table 1.1 shows the distribution of marital statuses in a recent survey
of students at a large state university. Participants were enrolled in randomly

8 Learning to Live with Statistics

Table 1.1 Marital Status Among a Sample of Students at a State University

Marital Status Frequency Percentage Valid Percentage

Single, solo 336 45.3 46.2
Single, attached 280 37.7 38.5
Married 98 13.2 13.5
Separated 2 .3 .3
Divorced 10 1.3 1.4
Widowed 2 .3 .3
Total 728 98.1 100.0
Missing 14 1.9
Total 742 100.0

Notes: “Frequency” refers to the actual number of students giving each answer. Altogether 742
students participated in the survey. “Missing” tallies the unusable responses. Fourteen students
either omitted the question or gave unreadable answers. “Percentage” simply expresses all category
frequencies as proportions of the total sample, totaling to 100%. “Valid Percentage” discounts the
missing cases and recalculates the category percentages based on just those who answered the
question. That number, or n, comprises 728 actual responses.
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selected classes.* Not surprisingly, most students were single, but a distinc-
tion is shown between singles who were unattached (“solo”) and those who
reported being in monogamous relationships (“attached”). The main point,
however, is that Table 1.1 illustrates a frequency distribution for a nominal
variable. Each category or status is qualitatively different from the others. We
do not have more marriage or less marriage. We have a series of different
relationship statuses. Moreover, although the categories “Single, Solo”
through “Widowed” may appear to be in some sort of logical order, we could
actually list them in any sequence we wished. Nominal categories have no
inherent order or linear, unidimensional feature to them. They are not differ-
ent degrees of one thing. They are different things or statuses. Similar attri-
butes of nominal variables are also illustrated in Table 1.2.

Table 1.2 shows the distribution of religious denominations among a recent
sample of college students. As in Table 1.1, this table shows the actual frequen-
cies, percentages, and the adjusted valid percentages for each category or
answer. As was the case with marital status, the categories here might have been
listed in any order. Nominal categories have no inherent order or sequence.
Finally, note also that Table 1.2 includes an “Other” category. It would be pro-
hibitive to list all possible religions in our original question, so this option makes
the choices exhaustive. Students may answer no matter what their religious
denominations. In Table 1.1, however, the choices shown for marital status in-
clude all options, and no residual or “Other” category is necessary.

At the next level of measurement, the order or sequence of categories is
important. In fact, this feature is reflected in the name, the ordinal level or scale.

Comparing Ranks
In contrast to nominal variables, ordinal measurements can be ranked. As the
name suggests, there is a natural or logical order to them. Common examples
of ordinal variables are social class or socioeconomic status (SES), religios-
ity (how religious one is), one’s degree of ethnocentrism or prejudice, politi-
cal liberalism or conservatism, and scores on essay exams. Not only may we
categorize respondents as to their liberalism or conservatism, religiosity, or

Beginning Concepts 9

*The tables in this chapter—and most in the text—derive from recent campus surveys
conducted by the author and students in survey research classes. The tables were prepared
using SPSS, a comprehensive statistical program used on virtually all college campuses.
Originally developed to aid social science research, its full name was the Statistical Pack-
age for the Social Sciences. It proved extremely popular, however, and its use spread to
many academic disciplines and to business and other venues. To reflect its broader appli-
cations but still retain the familiar acronym, the name was changed to Statistical Products
and Service Solutions. To most people, however, it remains simply SPSS.
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test scores, we may also rank the resulting categories or measurements. There
is a logical ranking to them, for example: Very Liberal, Liberal, Middle-of-
the-Road or Centrist, Conservative, and Very Conservative. We could reverse
the order, of course, and put Very Conservative first, but the overall set or list
would not make sense in any other sequence. Whenever they are listed, the
categories should proceed from one end of the continuum to the other. Simi-
larly, when we display a set of religiosity categories or test scores, we would
logically list them from most to least religious, highest to lowest, or vice versa.
We do not have qualitative differences between the measurements but rather
differences based upon more of something or less of something, that is, upon
differences of amount rather than differences of kind or type.

The preceding examples also illustrate the two different types of ordinal
measurements we might encounter. On the one hand, we may have a set of
rankable categories. That is the case with the liberalism-conservatism vari-
able above. Not only do we place people’s responses in particular political
categories, we may also legitimately rank the categories from the most liberal
to the most conservative (or least liberal, if you like). We may cross-tabulate
sets of rankable categorical measurements with other variables or use meas-
ures of association similar to those used with nominal measurements. Tables
1.3 and 1.4 illustrate frequency distributions for sets of ordinal categories. 

Please notice two things about Tables 1.3 and 1.4. First, the measure-
ment categories appear in logical sequences. Table 1.3 ranks answers along

10 Learning to Live with Statistics

Table 1.2 Religious Denomination Among a Sample of Students at a 
State University

Religious Denomination Frequency Percentage Valid Percentage

None/not applicable 204 27.5 29.8
Catholic 232 31.3 33.9
Other Christian 125 16.8 18.2
Buddhist 66 8.9 9.6
Hindu 13 1.8 1.9
Muslim (Islam) 10 1.3 1.5
Sikh 7 .9 1.0
Jewish 11 1.5 1.6
Other 17 2.3 2.5
Total 685 92.3 100.0
Missing 57 7.7
Total 742 100.0
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a frequency dimension, “Many Times” through “Never,” and Table 1.4 does
the same with agreement, “Strongly Agree” through “Strongly Disagree.”
Second, a new column on the right shows the Cumulative Percentage. It
shows the previous column, the Valid Percentage, cumulatively as one pro-
ceeds down the sequence of categories. Percentage-wise, it presents a running

Beginning Concepts 11

Table 1.3 Responses of a Student Sample to the Question: 
“Have You Ever Told Minor ‘White Lies’ or Fibs?”

Valid Cumulative
Told Minor Lies Frequency Percentage Percentage Percentage

Many times 172 23.2 24.3 24.3
Occasionally 361 48.7 51.0 75.3
Rarely 156 21.0 22.0 97.3
Never 19 2.6 2.7 100.0
Total 708 95.4 100.0
Missing 34 4.6
Total 742 100.0

Note: Percentages may not total 100.0 due to rounding.

Table 1.4 Responses of a Student Sample to the Statement: 
“If Asked, It Would Be OK to Help Family Members or 
Friends with the Answers on Tests.”

OK to Help Family Valid Cumulative
or Friends on Tests Frequency Percentage Percentage Percentage

Strongly agree 17 2.3 2.3 2.3
Agree 166 22.4 22.4 24.7
DK/NS 151 20.4 20.4 45.1
Disagree 295 39.8 39.8 84.9
Strongly disagree 112 15.1 15.1 100.0
Total 741 99.9 100.0
Missing 1 .1
Total 742 100.0

Notes: DK/NS stands for “Don’t Know/Not Sure,” i.e., generally ambivalent or undecided. Per-
centages may not total 100.0 due to rounding.
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total for all the cases as we proceed from the first category to the last. The
cumulative percentage makes sense only when we have ordered or rankable
measurements because we are counting down the categories and accumulat-
ing more and more cases as we proceed, in sequence, from one category or
measurement or rank to the next. The cumulative percentage has no meaning
if the order of our categories is arbitrary or discretionary, as it is with nomi-
nal measurements. It would change with every different order in which the
categories could be listed, and so it would not tell us anything useful.

In contrast, ordinal data may consist of numerical scores or measurements,
that is, not rankable categories, but actual numbers. These might result from,
say, grading exams or administering approve/disapprove opinion scales. Each
person now has his or her own individual score, and the scores may be ranked
from highest to lowest. Such a distribution is illustrated in Table 1.5. In three
separate questions, college students were asked to agree or disagree that TV
covered local, national, and world events well. Each question was scored with
the same 5-point, agree-disagree answer format as in Table 1.4. “Strongly
Agree” responses were the most positive and scored as 1, whereas “Strongly
Disagree” responses were negative and scored as 5. Adding the scores for the
three items yielded cumulative values ranging from 3 to 15. We may put

12 Learning to Live with Statistics

Table 1.5 College Students’ Scaled Scores Evaluating the Adequacy of 
TV News Coverage

Valid Cumulative 
Frequency Percentage Percentage Percentage

(+) 3 8 .6 .6 .6
4 10 .8 .8 1.4
5 27 2.0 2.0 3.4
6 102 7.7 7.7 11.1
7 102 7.7 7.7 18.9
8 167 12.6 12.7 31.5
9 119 8.9 9.0 40.5

10 149 11.2 11.3 51.8
11 146 11.0 11.1 62.9
12 185 13.9 14.0 76.9
13 114 8.6 8.6 85.5
14 65 4.9 4.9 90.5

(–) 15 126 9.5 9.5 100.0 
Total 1320 99.2 100.0 
Missing 10 .8 
Total 1330 100.0
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these combined scores in order, or rank them, but we may not claim, for
instance, that a scale score of 6 is exactly twice as positive about TV news
coverage as a score of 12. Our measurements of the variables are not that pre-
cise. All we may say is that the lower the score, the more positive a student’s
view of TV news programming.

Another example of a numerical ordinal scale comes from a survey on
lying. Regarding work assignments, students were asked whether they had ever
called an employer and falsely claimed to be sick and, separately, whether they
had ever lied to a professor about the reason for late or missing assignments.
Each item was originally scored on a 1 to 4 (“Many Times” to “Never”) scale.
Adding each student’s tallies on the two items yields a possible range of com-
bined scores from 2 through 8 (Table 1.6). As in the previous table, we may
not claim that a student scoring 3 is twice as likely to have lied as a student
scoring 6, but we may at least rank the X values. Our survey, after all, asked
students to generally estimate how often they had lied: Many Times, Occa-
sionally, Rarely, or Never. We had not asked for actual and precise numbers of
times. We may claim a set of ordered and rankable numerical scores, with the
lower score meaning more lying about reasons for not meeting one’s obliga-
tions, but we cannot claim to have measured those “lying histories” with true
mathematical precision.

Ordinal data in numerical form are suitable for statistical procedures using
ranks. Realizing the scores do not represent precise mathematical increments
of the variable, we simply rank them from highest to lowest or vice versa, and

Beginning Concepts 13

Table 1.6 College Students Scaled Responses About Lying to Employers 
and/or Professors

Valid Cumulative 
Frequency Percentage Percentage Percentage

Most 2 9 1.2 1.3 1.3
3 21 2.8 2.9 4.2
4 83 11.2 11.6 15.8
5 112 15.1 15.6 31.4
6 204 27.5 28.5 59.8
7 170 22.9 23.7 83.5

Least 8 118 15.9 16.5 100.0
Total 717 96.6 100.0
Missing 25 3.4
Total 742 100.0
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thereafter we ignore the original numbers and use the ranks in our statistical
procedures. We will return to this concept in Chapters 7 and 9. For now, there
are two remaining levels of measurement.

When the Numbers Count
The interval and ratio levels of measurement are legitimately accurate and
precise measurements with no subjectivity or doubt. These are the kinds of
measurements about which there is no ambiguity. An earlier example, age, is
such a variable. Other examples would be the number of units you are taking
this semester, how many units you have accumulated over your college career,
the number of miles you traveled, or the number of blocks you typically walk
to campus, how many people live in your household, how much money you
earned last year, and so on.

Statistically, the difference between the interval and ratio levels of mea-
surement does not matter. We may treat interval level measurements just as
we would ratio level observations. However, there is an important difference
between the two. Ratio scales have a true (or legitimate and meaningful) zero
point, that is, a complete absence of whatever is being measured, and interval
scales do not. Annual income, for example, would constitute a ratio scale.
Someone could, at least theoretically, have absolutely no income or even a neg-
ative income, so therefore an X = $000 measurement could be legitimate and
valid. In contrast, the Fahrenheit temperature scale represents interval level
measurements. A reading of zero degrees has no particular meaning because
freezing occurs at 32° Fahrenheit. And yet both scales, income and Fahrenheit,
are numerical, accurate, precise, and unambiguous. One has a meaningful zero
point, however, and the other does not. This is the difference between interval
and ratio scales, but we may treat interval and ratio data the same and ignore
that difference. It does remain essential, however, to distinguish between nom-
inal, ordinal, and interval-ratio measurements.

As examples, Tables 1.7 and 1.8 show frequency distributions for inter-
val-ratio measurements. As for the previous tables, Table 1.7 shows data from
a campus survey and clearly reflects a college population. Notice the compar-
atively large frequencies for people in their mid-twenties and just single-digit
tallies at age 33 and above. This predominance of people under age 30 is also
confirmed in the cumulative percentage column. We have accumulated or
accounted for fully 89.1% of the sample when everyone up through age 30
is counted. This feature of cumulative percentages also has another name. We
sometimes refer to it as the percentile rank of a number, defined as the pro-
portion or percentage of cases that fall at or below a certain point in a distri-
bution. With 89.1% of the cases falling at age 30 or below, someone exactly
30 would fall at about the 89th percentile rank in this distribution. We could

14 Learning to Live with Statistics
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Table 1.7 Age at Last Birthday Among a Sample of College Students

Valid Cumulative
Age Frequency Percentage Percentage Percentage

17 1 .1 .1 .1
18 30 4.0 4.2 4.4
19 49 6.6 6.9 11.3
20 62 8.4 8.8 20.1
21 96 12.9 13.6 33.7
22 115 15.5 16.3 49.9
23 104 14.0 14.7 64.6
24 48 6.5 6.8 71.4
25 47 6.3 6.6 78.1
26 24 3.2 3.4 81.5
27 16 2.2 2.3 83.7
28 20 2.7 2.8 86.6
29 8 1.1 1.1 87.7
30 10 1.3 1.4 89.1
31 10 1.3 1.4 90.5
32 13 1.8 1.8 92.4
33 5 .7 .7 93.1
34 6 .8 .8 93.9
35 2 .3 .3 94.2
36 2 .3 .3 94.5
37 1 .1 .1 94.6
38 1 .1 .1 94.8
39 5 .7 .7 95.5
40 3 .4 .4 95.9
42 3 .4 .4 96.3
43 3 .4 .4 96.7
44 2 .3 .3 97.0
45 3 .4 .4 97.5
46 3 .4 .4 97.9
47 3 .4 .4 98.3
48 1 .1 .1 98.4
50 2 .3 .3 98.7
51 2 .3 .3 99.0
54 1 .1 .1 99.2
55 1 .1 .1 99.3
57 1 .1 .1 99.4
59 1 .1 .1 99.6
67 1 .1 .1 99.7
77 1 .1 .1 99.9
82 1 .1 .1 100.0

Total 707 95.3 100.0
Missing 35 4.7
Total 742 100.0

Note: Percentages may not total 100.0 due to rounding. 
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also say that a 40-year-old student would be at almost the 96th percentile
rank. He or she would be as old or older than 96% of all students in the sam-
ple. We will use percentile ranks again in Chapter 3, when we discuss the
bell-shaped curve.

Table 1.8 shows a similar distribution but from a different survey. It illus-
trates an interval-ratio variable and distribution from a survey on immigration.

16 Learning to Live with Statistics

Table 1.8 If an Immigrant: Number of Years in US (College Student Sample) 

Valid Cumulative
Years in US Frequency Percentage Percentage Percentage

1 7 1.0 3.4 3.4
2 13 1.9 6.3 9.8
3 11 1.6 5.4 15.1
4 8 1.2 3.9 19.0
5 12 1.7 5.9 24.9
6 11 1.6 5.4 30.2
7 5 .7 2.4 32.7
8 7 1.0 3.4 36.1
9 9 1.3 4.4 40.5

10 19 2.8 9.3 49.8
11 12 1.7 5.9 55.6
12 14 2.0 6.8 62.4
13 5 .7 2.4 64.9
14 5 .7 2.4 67.3
15 7 1.0 3.4 70.7
16 8 1.2 3.9 74.6
17 6 .9 2.9 77.6
18 8 1.2 3.9 81.5
19 1 .1 .5 82.0
20 10 1.4 4.9 86.8
21 12 1.7 5.9 92.7
22 1 .1 .5 93.2
23 5 .7 2.4 95.6
24 2 .3 1.0 96.6
25 1 .1 .5 97.1
26 2 .3 1.0 98.0
30 1 .1 .5 98.5
31 1 .1 .5 99.0
32 1 .1 .5 99.5
45 1 .1 .5 100.0

Total 205 29.7 100.0
Missing 485 70.3
Total 690 100.0

Note: Percentages may not total 100.0 due to rounding.
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In this case, a questionnaire asked immigrant students how many years they had
been in the United States. The range of data is extensive, from a low of 1 year
(rounded off) to a high of 45 years. According to the cumulative percentage
column, about half the immigrant students (49.8%) had been in the United
States 10 years or less. Moreover, notice the large number of Missing cases in
Table 1.8. Most students (n = 485, or 70.3% of all respondents) were not
immigrants and, of course, did not answer the question. For this question,
they were coded as omits or “Missing.” Still, fully 29.7% of students in the
survey did answer as immigrants, no doubt reflecting recent and changing
demographics among young adults in the United States.

Interval-ratio measurements allow us to have the utmost confidence in their
mathematical accuracy and precision. Therefore—and this is a key point—any
calculations may use the actual X scores or measurements. Unlike nominal or
ordinal measurements, the data are not in categories nor must we convert the
data values to ranks. To justify their use, however, the original scores must be
absolutely reliable, unambiguous, and precise measurements of the variable in
question.

When we do have such reliable data, we may use the actual X scores in our
calculations. If we need to know the average or typical or usual response, we
may add up all the X values and then divide by the total number of cases or val-
ues we have, or n. If we have a set of ages, the X variable being age, we may
do this. If we have a set of essay exam scores, however, we have ordinal-level
measurements only and should not calculate an average. We may not be sure
how to precisely interpret each exam score, so we should not use them in any
statistical procedure. Instead of an average, we have alternative statistics avail-
able, as discussed in Chapter 2.

Two final considerations are important. First, as noted earlier, when we
do have interval-ratio data, we may use a broad range of statistical treat-
ments. This text assumes we have such data for the most part. Therefore, we
may look at a full range of introductory statistical tools. We will, however,
also look at statistics specifically designed for ordinal and nominal data.

Second, sometimes we are working with more than one level of data at the
same time. If we are correlating measurements on two variables, one nomi-
nal, say, and the other interval-ratio, what do we do then? A common rule is to
use a statistic (or statistics, plural) appropriate for the lower level. If we have
both nominal and interval-ratio data, for example, we use statistics suitable for
the nominal level. The higher-level variable meets all the assumptions and cri-
teria of the lower level of measurement, but the reverse is obviously not true.
Interval-ratio measurements meet all the criteria of nominal measurements (we
can distinguish between different categories or scores of the variable), but nomi-
nal data would certainly not meet the precise quantitative requirements of the
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interval-ratio level. Consequently, we should use statistics appropriate for the
nominal level. That is, we choose a level of measurement we are sure is met by
both our variables. As in most statistical situations, we would probably have
some choice in exactly how to treat the data, but we must be prepared to sacri-
fice that higher level of measurement in one of our variables on occasion.

Beyond this, and no matter what level(s) of data we have, there is another
matter to consider. What is the purpose of our analysis? Are we simply sum-
marizing data, or do we wish to make inferences about a larger universe or
population based upon seeing just a tiny fraction or sample of it? Do we wish
to summarize what we have or do we want to make educated guesses beyond
the data immediately available? These questions lead to the last part of this
introduction: the difference between descriptive and inferential kinds of sta-
tistical analyses.

To What End: Description or Inference?

Statistical analysis has two very broad areas: the descriptive and the inferen-
tial. The former is the more basic and, as the name suggests, amounts to
describing and summarizing data. Given a set of numbers, what is the aver-
age, do the numbers vary much or very little from that average, and what per-
centage of the cases fall below such-and-such a score? Examining the data at
hand, descriptive statistics look at variables one at a time and simply summa-
rize the data by calculating various statistical measures (e.g., averages, medi-
ans, standard deviations) and by showing frequency distributions. If we have
20 variables, we may easily summarize the scores or measurements for each
one and provide a report. We are distilling a lot of raw or original data down
into more comprehensible summary measures. Because this involves aver-
ages and the like, a good part of descriptive statistics and the material in the
following chapter should be familiar to you (or will come back quickly).
After that, we begin moving toward the second branch of statistics, inference.

Inferential statistics are a bit more involved and theoretical. The term infer-
ential derives from the fact that we are making inferences about larger uni-
verses or populations based upon just sample data. And this, in turn, requires
that we have random samples. Random samples (sometimes called probabil-
ity samples) are those that give every member of the population a statistically
equal chance to be selected. The procedures required for good random samples
can be quite involved and are beyond the scope of this text. Nevertheless, we
may justify making inferences about the population only if we have random
and representative samples. Our discussions of inferential statistical procedures
assume we are dealing with random samples.

18 Learning to Live with Statistics
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This second branch of statistics also covers most of what we think of
when we use the term “statistics”: the normal or bell-shaped curve, proce-
dures known as confidence interval estimates, hypothesis testing, correlation
and regression, and so on. But, as noted before, when we look at inferential
statistics, we must also consider probability. Statistical inference is based
upon probability. Whenever we make that extrapolation or inferential leap
from the sample to the population, there is always a chance we are wrong.
What is the probability the population average is or is not what we have esti-
mated? These probabilities must accompany any inferences we make.

Succeeding chapters look first at descriptive statistics, next at probability,
and finally turn to inferential statistics. Before proceeding, however, we must be
wary about assuming too much from this introduction: The level of measure-
ment, on the one hand, and the distinction between descriptive and inferential
statistics, on the other, are quite independent concepts. They do not neces-
sarily correlate in any way. Descriptive analyses, being the more simple and
elementary of the two, do not apply only to the nominal level of measure-
ment. Inferential statistical methods, being more involved and complex, do
not apply only to the higher levels of measurement. We may have descriptive
statistical summaries involving any scale of measurement, nominal to interval-
ratio. The same is true of inferential analyses, which may involve nominal,
ordinal, or interval-ratio data. It is not a case of a certain level of measurement
being appropriate for either descriptive or inferential methods. It is a matter
of selecting a basic statistical treatment (descriptive, inferential, or both),
depending on the study’s purpose, and only thereafter tailoring the specific
statistics used to the level(s) of measurement involved.

In Chapter 2, we turn to a few descriptive statistics, some of which will be
familiar. We first consider averages, more formally known as measures of cen-
tral tendency, and then look at a popular and valuable measure of variation.

Exercises

1. What is the level or scale of measurement, and why is it important in
statistical analyses?

2. Describe the principal levels of measurement, including the character-
istics of each and at least one example of each.

3. How do the levels of measurement differ regarding the statistical pro-
cedures possible with each?

Beginning Concepts 19

Asquith_1.qxd  6/2/08  5:44 PM  Page 19



20 Learning to Live with Statistics

4. What is the difference between numerical measurements at (1) the
ordinal level and (2) the interval-ratio level?

5. How do descriptive and inferential statistical analyses differ?

6. What is the importance of random sampling to statistical analyses?

Asquith_1.qxd  6/2/08  5:44 PM  Page 20


